
One of the principles that drives Gedae, Inc. is to create more value for
the customer than we get from them. Not only should you get world class
software and performance but world class value too! To that end Gedae’s
hardware simulation engine is now included with all licenses free!

DOLLARS AND SENSE

Another year flys by! It’s hard to believe that 2012 is almost at end. We hope everyone had a great year. I’m sure we can
agree that the world has been a challenging place this year. If you’re like us you see challenges as opportunities. Gedae
has responded to the challenges of 2012 with focused growth – people, products and partners.

In 2012 we added proven advisor’s and executives to the team, we announced two technology partners and we complet-
ed development of the Idea Language. 2013 will be a very exciting year at Gedae as we continue to increase staff, launch
new products, and add more partners.

One of the real joys this holiday season is the opportunity to say thank you. Thank you for your business and for the nu-
merous business relationships that have provided technical feedback to help guide the growth of Gedae’s product family.

Wishing you the joy of family, the gift of friends, and the best of everything in 2013, r The Gedae Staff and their Families

Issue No. 3, December 2012

GEDAE IS GROWING
Website Update January 2013!
Visit the Gedae Website often to see
huge upgrades we have in store.
Check back often for news, informa-
tion and tutorial updates.

1247 N Church Street, STE 5, Moorestown, NJ 08057 USA www.gedae.com; gedae@gedae.com; (856) 231-4458

G E D A I C A
pl n 1.of or relating to the culture, artifacts, customs of Gedae

Figure 1: Idea Code

do(p[n] = v_init[n], float v[n] = v_init[n], float t = 0) {
 	 // if pulse falls in this time period, apply it to the string
 int t1 = t/Pp;
 t2 = t - t1*Pp;
 Fp1 = t2 < dt ? Fp : 0.0;
 Fp2[n1] = (n1+1)==N0 ? Fp1 : 0.0;
 	 // curvature of string for small displacements
 d2p[n1] = (p[n1]-2*p[n1+1]+p[n1+2]) / dx;
 	 // force on string segment
 f[n1] = F * d2p[n1] - v[n1+1] * Kf + Fp2[n1];
 a[n1] = f[n1]/M; // F = M*a; - acceleration of segment
 v1[n1] = v[n1+1] + a[n1] * dt; // v = v0 + v*t new velocity
 aveV[n1] = v[n1+1] + v1[n1]; // average velocity over dt
 	 // x = a*dt`2/2 + v*dt + x0; new position of string
 p1[n1] = 0.5*a[n1]*dt`2 + aveV[n1]*dt/2 + p[n1+1];
 v[n] = set(v,v1,1);
 p[n] = set(p,p1,1);
 out[n] = (n==0 || n==(N-1)) ? 0.0 : p1[n-1];
 t = t + dt;
 push out;
} while (1);

Figure 2: Simulation Output

CODE, TOOLS & TIPS

Gedae 6.5 introduces
iteration syntax to the
!deaTM language. The syn-
tax for iteration is derived
from common procedural
languages like C/C++ but
has a few extra features to
enable optimized parallel-
ization and streaming.

The code shown to the
right (Fig. 1) is the core loop
of a vibrating string model.
(DISCLAIMER: the code may or
may not be an accurate model
of the physics of a string. No
warranty expressed or implied.
Use the code at your own risk.)

This example illustrates a
do-while loop. In !dea, the
do-while has an extra sec-
tion after the “do” keyword
for initialization of loop
variables – variables whose
memory is reused during
the loop. Loop variables
are unique in !dea in that
they can appear on both
the left and right hand side
of expressions. The plot
(Fig. 2) shows the position of
the string at some point in
the simulation. The vertical
dimension is greatly exag-
gerated.

The device we are model-
ing is a string that is anchored at both ends. The primary variables used in the simulation are listed in the table to the
right. The dimensions (range variables) n and n1 are based on the number of segments used in the string model. The
dimension n1 is 2 less than n since the endpoints are anchored and all variables are fixed at 0. The persistent time and
velocity vectors are updated using the transient versions using the set() function. The key word push has been added
to the language to support exporting data from a loop. It may seem a bit unusual. In this example, while the loop is
infinite the variable out is exported on every iteration, producing a new token accessible outside the loop. The curi-
ous result is that there can be many loops
executing within the application and all hap-
pily working concurrently. Hmmm! The Idea
code can be easily tweaked to develop more
interesting or accurate models. For example,
in the simulation the pulse (tap) duration is
one time increment of the models. It might
make more sense to have a pulse duration
variable as well as a pulse period. Download
the example and experiment to your heart’s
content.

Name Description
p[n]/v[n] Persistent position / velocity of the string
p1[n1]/v1[n1] Transient position / velocity of the string
d2p[n1] 2nd derivative of string position
f[n1] Total force on string
a[n1] Acceleration of string

Figure 3: Results Table

Vibrating String Example

Is there an example you’d like to see in CODE, TOOLS & TIPS? — We’re looking for industry parallel processing applications to
implement in Idea Language and publish results. Submit yours today via cc@gedae.com.

